
BIMM [LONDON]

Student ID:
1090817

[Music and Sound Production]

[8]
2023/2024

[LN/EMP604X/23]
[A1]

Word Count:
WORDS 2198



Iʼve developed a web-based step-sequencer, hosted at https://dark-step-a013f.web.app/, using Tone.js, React.js, and
Next.js. React.js automates updates/data management, and Next.js enables modular organization of the application for
improved manageability.

My project has the following features:

● A module-based step-sequencer consists of a grid with 256 buttons, comprising 16 steps and 16 notes for
each step. There are 8 blocks of 256 buttons for each instrument, and these can be enabled or disabled to
create complex arrangements. Figure.1

● The step-sequencer features four instruments, each with their own 8 blocks:

○ A bass guitar, offering one octave of short notes and one octave of longer notes.
○ A chord synth that plays various types of chords.
○ A bell-type synth with different oscillator wave options and ADSR controls. Figure.2
○ A drum kit that can switch between 808 electronic drums and live drums.

● Additionally, there is a playable synth where dragging the mouse or your finger across the pad controls the
note (x-axis) and the cutoff (y-axis). Figure.5

● A granular sampler that allows for the upload of an audio file, enabling control over playback speed, grain
size, granular overlap, randomness, detune, and pitch drift. Figure.3/4

● The mixer panel includes volume controls for all instruments and a variable tempo slider.Figure.6

The inspiration for this project comes from the logic step sequencer, Apple Inc., 2023 the Ample sound bass synthesizer
which uses bass samples to create a virtual instrument Ample Sound, no date), and the Jupiter 8 hardware synth that
inspired and contextualized the synthesizer instruments.Roland Corporation. 1981

When I first tried to create the sequencer clock, I used the JavaScript setInterval() method which allows you to start a
clock, and then change the current step to the next step at a timing interval. This did not work, further research showed
that setInterval() relies on the JavaScript runtime environment's single-threaded event loop, so it is subject to
non-deterministic execution times, especially under CPU load, leading to inconsistent and unreliable timing for
triggering musical events. "JavaScript is cooperatively single-threaded, so interrupt callbacks execute atomically and do not
preempt each other.ˮ Mickens, Elson, and Howell, 2010 This led me to read about the WebAudio Api which allows you to
perform said tasks more reliably Tsuchiya, Freeman, and Lerner, 2016 and Tone.js which is a library of premade
WebAudio Api objects. Tone.js Documentation, 2024 Tone.js has a transport object which initiates a clock, you provide it
with a bpm value and you can schedule events to repeat on set intervals. Rajora, 2024 I set each 16th note to trigger
the current step to change. This was reliable and allowed me to perform visual updates to the GUI on each step.

I then created a function and a button to play/pause the transport.

Initially, I tried to trigger notes directly within the transport scheduleRepeat function, yet this proved too intensive for
scheduleRepeat to handle and only worked with one or two notes selected before auditory artifacts appeared.

https://dark-step-a013f.web.app/


I reviewed scheduling techniques in the Tone.js documentation, which suggested that pre-scheduling notes could
optimize audio buffer performance. Tone.js Documentation, 2024 However, early attempts introduced artifacts.
I utilized Tone.Part in Tone.js to efficiently schedule and adjust musical events using transport time notation like 001 or
012, synchronized with Tone.Transport. Tone.Part maintains a precise timeline of events, each with a specified time
and callback, ensuring accurate execution during active sessions. Tone.js, 2024

Tone.Part also supports looping, ideal for repetitive sequences. Tone.js Documentation, 2024 I developed a function to
adjust the Tone.Part length based on active "sections" — groups of 16th notes that can be toggled on or off, allowing
complex rhythm configurations in my sequencer with up to 8 adjustable sections. This feature dynamically manipulates
the sequence structure for intricate musical arrangements.

The above code shows setting up the Tone.part and instructing how many measures to run for. Tone.part allows you to
pass through arguments in the values object. I set up each instrument as a switch case to manage its behavior within
the part. Kaity, 2023 This follows the command dispatcher pattern often used in programming. Dupire & Fernandez,
2001 I can now add or remove notes on the part by providing an instrument, note and time.



Initially, I attempted to remove notes from Tone.Part by constructing a new object and using the .remove method (the
example above). However, this approach failed. The documentation stated this implementation should work. Tone.js
Documentation, 2024 As it did not work I further troubleshooted by inspecting the constructor within Tone.js Tone.js is
open source so I could search the codebase) and found that it compared objects using an equality operator. I
discovered that JavaScript's object management system compares objects by memory address rather than content,
meaning a note added to Tone.Part can only be removed by referencing the exact memory address it was assigned
with."The proxy identity is observable with the JavaScript equality operators == and ===: When applied to two objects, ... distinct
proxies return false even though the underlying target is the same." Keil et al., 2015 This necessitates storing a copy of the
“noteForSequencerˮ object before adding it to Tone.Part. For removal, I must retrieve and use this same object,
effectively managing it by its memory address. This approach ensures precise identification and manipulation of the
specific object in memory.

Here is an example of Tone.Part.Remove that works by referencing the exact same memory address.



For visual feedback and animation control, notes are additionally maintained in an array for each instrument. Below is
the entire function with annotations for adding and removing notes:



The same underlying logic as above was applied to develop a trash button and a copy button.

I addressed a challenge in dynamically adjusting note timings based on active sequencer sections. For instance, with
only sections 1 and 6 active, notes from section 1 are timed for the first measure and those from section 6 for the
second. Activating another section, like section 2, shifts section 6 notes to the third measure. To manage this, I store
notes without measure information (e.g., "23") and developed a function to reset Tone.Part, recalibrate its length, and
regenerate full time notations for notes when active sections change. This approach keeps note timing accurate and
consistent.



I created a simple function to manage actions (select, remove and add) on sections when they are clicked.

After resolving the note activation logic, I set up the instruments: a bass, 808 drum kit, and live drum kit, all using
sampled sounds. I recorded the bass samples myself and found the drum samples in an old folder. Each sample was
processed to normalize volume and improve tonal quality. This involved gain adjustment, Izotope RX (to de-noise the



recorded bass notes) dynamic range compression, equalization for frequency balance, and saturation to enhance
warmth and harmonic detail. This ensured uniformity across all samples for consistent sound quality.

In my implementation, I initialized a Tone.Sampler object, assigning audio samples to specific notes, albeit with
unconventional note mapping due to an encountered issue. Tone.Sampler under the hood manages audio buffering and
playback, which in a manual setup using the WebAudio Api would require explicit creation and management of
AudioBuffer and AudioBufferSourceNode for each sample. Matuszewski & Rottier, 2023 These elements handle the
decoding and playback of audio data respectively, a complex process simplified by Tone.Sampler. Tone.js
Documentation, 2024

Recognizing the challenges of audio file loading, especially on mobile networks, I implemented a state monitoring
system for each instrument. This setup utilizes the onload callback of Tone.Sampler to update the UI once all
instrument's samples are fully loaded. This precaution ensures that playback does not commence before all audio files
are properly loaded, thereby preventing potential playback errors. The same process was applied to both drum kits.

I utilized the Tone.js Tone.PolySynth constructor for the bell synth, which supports polyphony by creating multiple
instances of a specified monophonic synth - Tone.Synth in this case. This approach significantly simplifies
development, as Tone.js automates the management of multiple synthesizer instances and handles intricate
configurations that would otherwise require manual implementation using the WebAudio Api directly.Tone.js
Documentation, 2024 Without Tone.js, creating a monophonic synth would involve manually establishing oscillators,
linking them through volume envelopes, and coding methods to alter ADSR and oscillator types. Eriksson, 2013 To
make it polyphonic would mean creating a method to duplicate the monophonic synth when extra notes are needed
and handle cleanup, a process that Tone.js streamlines effectively.

Tone.js allows me to manipulate the oscillator ADSR in any and all ways so to implement the aforementioned myself
would be considered an anti-pattern in software development. There's no need to reinvent such fundamental
components when they have already been efficiently implemented by existing libraries. Ramirez Lahti, 2020



The oscillator and envelope settings for this synth are variable, and are controlled from the synths settings menu.

Tone.js has effects built in that I used, such as delay and reverb. I used the implementation of Freeverb (an open source
reverb algorithm) for the reverb. I would have enjoyed implementing at least one effect from scratch with more time. For
example, Freeverb uses Schroeder) filters that scatter phase reflections to smooth echo density, and comb filters
create decaying echoes through a feedback loop with a low-pass filter to mimic environmental high-frequency
absorption. If time had permitted, I could have explored making my own reverb, perhaps by creating a unique feedback
delay network FDN that uses interconnected delay lines and feedback loops to produce a dense, diffuse
reverberation, simulating various acoustic environments. Välimäki et al., 2012Schlecht, 2020

Above shows how I initiate these effects, with values such as room size and wet. I then route the synth through these
effects using Tone.chain which allows you to dictate the signal flow of the digital audio. The synth also gets routed
through the volume values from the mixer. I attempted to add more effects to the mixer but doing it in the same way
caused buffer overloads, this would take refactoring/rethinking most of the logic to fix.

All the other instruments get routed in the same way.



For the playable synth pad, instead of scheduling notes I create a monophonic synth and use the triggerAttack method
instead of triggerAttackRelease. I use Tone.now as the time parameter and the note is dictated by where on the x axis is
clicked. On mouse move/touch move the current note is accessed and changed, by using portamento this allows the
notes to slide. On mouse/touch end actions use the triggerRelease method to stop the note. I also route this through a
low pass cutoff filter that's frequency is determined by the y-axis. To make the synth more responsive and feel more
interactive I also scale effects such as reverb, delay and chorus vertically the longer the mouse is held down. Below is
how I handled mouse actions, touch actions (mobile) were handled differently but produce the same results.



The granular sampler operates by first providing a file upload interface that stores an uploaded audio file into an audio
buffer. The Tone.GrainPlayer internally manages the dissection of audio samples into small segments, or "grains," and
their subsequent playback. Tone.js Documentation, 2024

The granular synthesis process handled by Tone.GrainPlayer involves:

● Overlap: Determines the degree to which grains overlap each other, affecting the density and texture of the
sound.

● Detune: Alters the pitch of individual grains, measured in cents, to create subtle pitch variations.

● Random: Introduces randomness in the starting point of each grain within the sample, contributing to a more
complex and evolving sound texture.

● Drift: Modifies the grain playback speed over time to achieve a shifting, dynamic sound.

● Playback Speed: Controls the rate at which the grains are played back, impacting the perceived speed and
pitch of the sound.

● Grain Size: Sets the duration of each grain, influencing the smoothness or choppiness of the resultant audio
texture.

I enable the user to adjust these values with the UI.



I created a Tone.Analyser in "waveform" mode with 1024 samples to capture and visualize real-time audio amplitude
changes by connecting it to the master output and drawing the waveform onto a HTML canvas.

A few examples of how I update musical values:



A few examples of how I create the User Interface:



Throughout this project, challenges such as buffer overloads emerged frequently. particularly when I attempted to
enhance the mixer beyond basic volume controls and during initial note triggering via the transport in the WebAudio
Api. These issues underscore the need for efficient methods in programming. Future updates would focus on
optimizing for mobile platforms, extending mixer functionalities, and adding key modulation capabilities. To add mixer
effects, such as EQ etc, a refactoring of the audio effects initialization sequence is required to prevent overloads.
Additionally, enabling musical key changes would necessitate a redesign of how notes are stored and manipulated,
increasing the complexity of the already complex add and remove functions.

Bibliography:

1. MDN contributors, 2023. Web Audio API. Available at:
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API Accessed 16 April 2024.

2. Mickens, J., Elson, J. and Howell, J., 2010. Mugshot: Deterministic Capture and Replay for JavaScript
Applications. In: NSDI. Available at:
https://www.usenix.org/legacy/events/nsdi10/tech/full_papers/mickens-mugshot.pdf Accessed 20 April
2024.

3. Tsuchiya, T., Freeman, J. and Lerner, L.W., 2016. Data-Driven Live Coding with DataToMusic API. In:
Proceedings of the Web Audio Conference, Georgia Institute of Technology, Center For Music Technology,
pp.18. Available at: http://webaudioconf.com/_data/papers/pdf/2016/2016_55.pdf Accessed 20 April 2024.

4. Tone.js Documentation, 2024. Tone.js API Documentation. [online] Available at:
https://tonejs.github.io/docs/14.7.77/index.html Accessed 20 April 2024.

5. Rajora, Y., 2024. Composing Music in JavaScript using Tone.js. C# Corner. Available at:
https://c-sharpcorner.com/article/composing-music-in-javascript-using-tone-js/ Accessed 27 February
2024.

6. Tone.js, 2019. Events. GitHub. Available at: https://github.com/Tonejs/Tone.js/wiki/Events Accessed 20 April
2024.

7. Keil, M., Guria, S.N., Schlegel, A., Geffken, M. & Thiemann, P., 2015. Transparent Object Proxies for
JavaScript. Technical Report. University of Freiburg, Germany. Accessed 20 April 2024.

8. Kaity, P., 2023. The Ultimate Guide to Understanding Switch Cases in JavaScript. Medium. Available at:
https://medium.com/@pradipkaity/the-ultimate-guide-to-understanding-switch-cases-in-javascript-b49a2b
3927da Accessed 14 April 2024.

9. Dupire, B. & Fernandez, E.B., 2001. The Command Dispatcher Pattern. In: 8th Conference on Pattern
Languages of Programs. Available at:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b6fdf774e0b86a0586855405f109b8bda2
27cc1c Accessed 20 April 2024.

10. Matuszewski, B. & Rottier, O., 2023. The Web Audio API as a Standardized Interface Beyond Web Browsers.
Journal of the Audio Engineering Society, 7111, pp.790801. Available at: https://hal.science/hal-04352384
Accessed 20 April 2024.



11. Eriksson, O., 2013. Implementing virtual analog synthesizers with the Web Audio API An evaluation of the
Web Audio API. Bachelor's thesis, Linnaeus University, Faculty of Technology, Department of Computer
Science. Available at: https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27099 Accessed 20 April 2024.

12. Ramirez Lahti, J., 2020. Reversing Entropy in a Software Development Project: Technical Debt and
AntiPatterns. MSc Thesis, University of Helsinki, Faculty of Science, Department of Computer Science.
Available at:
https://helda.helsinki.fi/server/api/core/bitstreams/f1e19f8332e74618861595002677b44d/content
Accessed 20 April 2024.

13. Välimäki, V., Parker, J.D., Savioja, L., Smith, J.O. & Abel, J.S., 2012. Fifty Years of Artificial Reverberation. IEEE
Transactions on Audio, Speech, and Language Processing, 205, pp.14211448. Available at:
https://doi.org/10.1109/TASL.2012.2189567 Accessed 20 April 2024.

14. Schlecht, S., 2020. FDNTB The Feedback Delay Network Toolbox. In Proceedings of the International
Conference on Digital Audio Effects, pp.211218. DAFx. Available at:
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx2020_paper_53.pdf Accessed 20 April 2024.

15. Apple Inc. 2023 Logic Pro X Software]. Available at: https://www.apple.com/logic-pro/ Accessed: 22 April
2024.

16. Ample Sound. (no date) Ample Bass P Lite Software]. Available at:
https://www.amplesound.net/en/pro-pd.asp?id=19 Accessed: 22 April 2024.

17. Roland Corporation. 1981 Jupiter-8 Synthesizer Hardware]. Accessed: 22 April 2024.

Appendices:

Figure 1, Step Sequencer Labeled)



Figure 2, Bell Synth Oscillator & ADSR

Figure 3, Granular Sampler File Upload)



Figure 4, Granular Sampler Interface)

Figure 5, Playable Synth pad)



Figure 6, VolumeMixer)


